Abstract

This paper considers a dynamic optimization problem (DOP) of 1,3-propanediol fermentation process (1,3-PFP). Our main contributions are as follows. Firstly, the DOP of 1,3-PFP is modeled as an optimal control problem of switched dynamical systems. Unlike the existing switched dynamical system optimal control problem, the state-dependent switching method is applied to design the switching rule. Then, in order to obtain the numerical solution, by introducing a discrete-valued function and using a relaxation technique, this problem is transformed into a nonlinear parameter optimization problem (NPOP). Although the gradient-based algorithm is very efficient for solving NPOPs, the existing algorithm is always trapped in a local minimum for such problems with multiple local minima. Next, in order to overcome this challenge, a gradient-based random search algorithm (GRSA) is proposed based on an improved gradient-based algorithm (IGA) and a novel random search algorithm (NRSA), which cannot usually be trapped in a local minimum. The convergence results are also established, and show that the GRSA is globally convergent. Finally, a DOP of 1,3-PFP is provided to illustrate the effectiveness of the GRSA proposed by this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call