Abstract

Optimal control of substrate feed rate in glycerolysis of vegetable oils was studied as a tool to improve monoacylglycerols (MAG) and diacylglycerols (DAG) production. Stochastic optimization strategy (Differential Evolutionary algorithm) was used to deal with the high complexity of the enzyme-catalyzed reactions dynamic behavior. Depending on the reaction system, optimal control of glycerol feed rate into the reaction showed to avoid enzymatic inhibition by the glycerol and improve acylglycerols yields up to 50% when compared to batch system. The obtained results showed that optimal control strategy can be used as an efficient tool to maximize the amount of desired product obtained by enzyme-catalyzed glycerolysis, particularly when the biocatalyst activity is significantly affected by substrate concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.