Abstract

In this paper we present a strategy to maintain a dynamic optimal binary search tree. The algorithms for insertion and deletion use swapping as the basic operation. Since in average situations the tree reorganization is limited to local changes, it can be favourably compared with the local balancing algorithms. The present algorithms dynamically maintain the optimal tree with an amortized time of O(log2 n), where n is the total number of nodes in the tree. In the worst case situations, the algorithms take only O(n) time. This is significant when they are compared to the algorithms producing static optimal binary search trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.