Abstract
Smoking is associated with various detrimental health conditions, including cancer, heart disease, stroke, lung illnesses, diabetes, and fatal diseases. Motivated by the application of fractional calculus in epidemiological modeling and the exploration of memory and nonlocal effects, this paper introduces a mathematical model that captures the dynamics of relapse in a smoking cessation context and presents the dynamic behavior of the proposed model utilizing Caputo fractional derivatives. The model incorporates four compartments representing potential, persistent (heavy), temporally recovered, and permanently recovered smokers. The basic reproduction number R0 is computed, and the local and global dynamic behaviors of the free equilibrium smoking point (Y0) and the smoking-present equilibrium point (Y*) are analyzed. It is demonstrated that the free equilibrium smoking point (Y0) exhibits global asymptotic stability when R0≤1, while the smoking-present equilibrium point (Y*) is globally asymptotically stable when R0>1. Additionally, analytical results are validated through a numerical simulation using the predictor–corrector PECE method for fractional differential equations in Matlab software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.