Abstract

1H spin-lattice relaxation studies have been performed for binary systems, including glycerol as the first component and alanine, glycine, and aspartic acid (with different levels of deuteration) as the second one. The relaxation studies have been performed in the frequency range from 10kHz to 10MHz vs temperature. A theoretical framework, including all relevant 1H-1H and 1H-2H relaxation pathways, has been formulated. The theory has been exploited for a thorough interpretation of a large set of the experimental data. The importance of the 1H-2H relaxation contributions has been discussed, and the possibility of revealing dynamical properties of individual liquid components in binary liquids has been carefully investigated. As far as the dynamical properties of the specific binary liquids, chosen as an example, are considered, it has been shown that in the presence of the second component (alanine, glycine, and aspartic acid), both molecular fractions undergo dynamics similar to that of glycerol in bulk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call