Abstract
Topological soliton states, existing in the topological structures with edge defect or interface defect, are usually studied under steady state. Here, we experimentally observe the dynamic processes of the generation and the extinction of such soliton states in the Su-Schrieffer-Heeger model. The different topological structures are implemented on a programmable nanomechanical lattice, consisting of eight adjacent string resonators which are parametrically coupled by manipulation voltages. Moreover, the beating and localization behaviors at different topological interfaces are also observed in the same device. These results explicitly exhibit the dynamic processes of topological soliton states, which reveal real potential toward integrated multifunctional topological materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.