Abstract

As rubber materials are used for damping, clarifying the relationship between the loss factor and microstructure would help develop high-performance damping materials. Although nondestructive observations using X-ray computed tomography (CT) under repetitive deformation have been reported, no observations have been reported at the submicron order that capture low-strain deformation, such as vibration exposure. The internal deformation behavior of materials with different loss factors has not yet been evaluated. This study proposes a dynamic X-ray CT method for specimens under tensile amplitudes, directly evaluating the internal deformation behavior of materials under dynamic conditions. The proposed 4D-CT has an excitation of 1 Hz and a spatial resolution of 0.5 μm. The local strain was obtained from X-ray CT at each phase, and the deformation behavior was evaluated. The results revealed that the peak of the local strain amplitude distribution curve decreased and the distribution widened as fine particles were mixed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.