Abstract

Nucleation and growth mechanisms of Ni nanoparticles synthesized via an incipient wetness technique on a high-surface area titania support (i.e., a mixture of anatase and rutile) are studied using environmental transmission electron microscope (ETEM). Most Ni nanoparticles are found to nucleate from the Ni precursor coated on the surface of the titania support. Even though both anatase and rutile supports are the nucleation sites for Ni nanoparticles, it was observed that the particles have different morphologies on the supports, i.e., a non-wetting morphology on the anatase support versus a wetting morphology on the rutile {1 0 1}. This is because the interfacial energy of Ni/rutile is lower than that of Ni/anatase. Titania clusters are found to nucleate on the surface of the Ni particles during in situ ETEM reduction, indicating that the presence of partial titania overlayers is directly related to the synthesis of the Ni/TiO 2 catalysts. The growth mode of the Ni nanoparticles on the titania support is three-dimensional, while that of the rutile cluster on the surface of the Ni is two-dimensional layer-by-layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.