Abstract

Hyperpolarization of 13C-enriched biomolecules via dissolution dynamic nuclear polarization (DNP) has enabled real-time metabolic imaging of a variety of diseases with superb specificity and sensitivity. The source of the unprecedented liquid-state nuclear magnetic resonance spectroscopic or imaging signal enhancements of >10 000-fold is the microwave-driven DNP process that occurs at a relatively high magnetic field and cryogenic temperature. Herein, we have methodically investigated the relative efficiencies of 13C DNP of single or double 13C-labeled sodium acetate with or without 2H-enrichment of the methyl group and using a 4-oxo-TEMPO free radical as the polarizing agent at 3.35 T and 1.4 K. The main finding of this work is that not all 13C spins in acetate are polarized with equal DNP efficiency using this relatively wide electron spin resonance linewidth free radical. In fact, the carbonyl 13C spins have about twice the solid-state 13C polarization level of methyl 13C spins. Deuteration of the methyl group provides a DNP signal improvement of methyl 13C spins on a par with that of carbonyl 13C spins. On the other hand, both the double 13C-labeled [1,2-13C2] acetate and [1,2-13C2, 2H3] acetate have a relative solid-state 13C polarization at the level of [2-13C] acetate. Meanwhile, the solid-state 13C T1 relaxation times at 3.35 T and 1.4 K were essentially the same for all six isotopomers of 13C acetate. These results suggest that the intramolecular environment of 13C spins plays a prominent role in determining the 13C DNP efficiency, while the solid phase 13C T1 relaxation of these samples is dominated by the paramagnetic effect due to the relatively high concentration of free radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call