Abstract

1H dynamic nuclear polarization and nuclear spin-lattice relaxation rates have been studied in amorphous complexes of β-cyclodextrins doped with different concentrations of the TEMPO radical. Nuclear polarization increased up to 10% in the optimal case, with a behavior of the buildup rate (1/TPOL) and of the nuclear spin-lattice relaxation rate (1/T1n) consistent with a thermal mixing regime. The temperature dependence of 1/T1n and its increase with the radical concentration indicate a relaxation process arising from the modulation of the electron-nucleus coupling by the glassy dynamics. The high-temperature relaxation is driven by molecular motions, and 1/T1n was studied at room temperature in liquid solutions for dilution levels close to the ones typically used for in vivo studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.