Abstract

The dynamic hierarchical Dirichlet process (dHDP) is developed to model complex sequential data, with a focus on audio signals from music. The music is represented in terms of a sequence of discrete observations, and the sequence is modeled using a hidden Markov model (HMM) with time-evolving parameters. The dHDP imposes the belief that observations that are temporally proximate are more likely to be drawn from HMMs with similar parameters, while also allowing for “innovation” associated with abrupt changes in the music texture. The sharing mechanisms of the time-evolving model are derived, and for inference a relatively simple Markov chain Monte Carlo sampler is developed. Segmentation of a given musical piece is constituted via the model inference. Detailed examples are presented on several pieces, with comparisons to other models. The dHDP results are also compared with a conventional music-theoretic analysis. All the supplemental materials used by this paper are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.