Abstract

Expansion cycle rocket engines have unintelligible and sensitive dynamic behavior. Contrary to other types of rocket engine which have gas generator, Expansion cycle rocket engines utilizes mass flow of fuel propellant to provide power for rotating turbo pump. Which contributes to a complicated and difficult ignitions process in these engines. Priority and delay process in opening of control valves is important to prevent aforementioned phenomena. As opening and closing of control valves cause dynamic process in rocket engine, whose effects are expensive and difficult to predict by experimental tests. Therefore, dynamic modelling plays a key role in development of expansion cycle rocket engines and may decrees future expenses. In this article RL-10 rocket engine with sufficient data for validation has been chosen. The main goal of this article is dynamic modelling of expansion cycle rocket engine using mathematical non-linear models. Modelling results yield that the presented non-linear model is valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.