Abstract
We have studied the charged BTZ black holes in noncommutative spaces arising from two independent approaches. First, by using the Seiberg-Witten map followed by a dynamic choice of gauge in the Chern-Simons gauge theory. Second, by inducing the fuzziness in the mass and charge by a Lorentzian distribution function with the width being the same as the minimal length of the associated noncommutativity. In the first approach, we have found the existence of non-static and non-stationary BTZ black holes in noncommutative spaces for the first time in the literature, while the second approach facilitates us to introduce a proper bound on the noncommutative parameter so that the corresponding black hole becomes stable and physical. We have used a contemporary tunneling formalism to study the thermodynamics of the black holes arising from both of the approaches and analyze their behavior within the context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.