Abstract
In recent years, a new method to measure transverse blood flow based on the decorrelation of the radio-frequency (RF) signals, has been developed. Transverse blood flow estimation may be influenced by noise. In this paper, we investigated a new correlation-based method for noise correction. The decorrelation characteristics of transverse blood flow using an intravascular ultrasound (US) or IVUS array catheter were studied by means of computer modeling. Blood was simulated as a collection of randomly located point scatterers; moving this scattering medium transversely across the acoustical beam represented flow. Parabolic blood flow was simulated. Additive noise was added to the RF signals at a given signal-to-noise ratio (SNR). Next, a new method to dynamically estimate and suppress the decorrelation due to noise is presented. The decorrelation due to noise was estimated from the correlation coefficients from flowing blood obtained at increasing time lags. The correlation graphs are corrected for the decorrelation due to noise, leaving the decorrelation due to blood flow. The method shows promise to estimate and correct the correlation coefficients for noise. (E-mail:lupotti@tch.fgg.eur.n)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.