Abstract
23Na nuclear magnetic resonance (NMR) and conventional chemical methods were employed to measure Na+ fluxes in Amphiuma red blood cells (RBC) during volume regulation. Paramagnetic shift reagents [dysprosium triethylenetetraminehexaacetic acid (DyTTHA) and dysprosium tripolyphosphate (Dy(TPP)2)] were used to alter extracellular Na+ magnetic resonance. Data are presented describing 23Na resonance dependence on shift reagent, sodium and calcium concentration. We confirmed that the shift reagents neither enter the cells nor alter intracellular Na+, K+, and Cl-concentrations under control conditions when extracellular calcium was maintained greater than 0.5 mM. We also confirmed that the shift reagent complexes chelate calcium [Dy(TPP)2 much more so than DyTTHA] and that their toxic effects could be alleviated by adjusting calcium in the cell's suspension medium to control levels. In parallel experiments, where volume-activated Na+ fluxes ranged from 0.3 to 3 mmol Na+/kg dry cell solid (DCS) x minute in cells containing from 30 to 150 mmol Na+/kg DCS, changes in intracellular sodium measured by 32Na NMR were within 4% of those measured by conventional destructive methods. Finally, we present data that are consistent with the interpretation that 6 mmol Na+/kg DCS plus 16% of intracellular Na+ is NMR invisible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.