Abstract
In this paper, the problem of health monitoring and prognosis of aircraft gas turbine engines is considered by using computationally intelligent methodologies. Two different dynamic neural networks, namely the nonlinear autoregressive with exogenous input neural networks and the Elman neural networks, are developed and designed for this purpose. The proposed dynamic neural networks are designed to capture the dynamics of two main degradations in the gas turbine engine, namely the compressor fouling and the turbine erosion. The health status and condition of the engine in terms of the turbine output temperature (TT) are then predicted subject to occurrence of these deteriorations. Various scenarios consisting of fouling and erosion separately as well as combined are considered. For each scenario, several neural networks are trained and their performance in predicting multiple flights ahead TTs is evaluated. Finally, the most suitable neural networks for achieving the best prediction are selected by using the normalized Bayesian information criterion model selection. Simulation results presented demonstrate and illustrate the effective performance of our proposed neural network-based prediction and prognosis strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.