Abstract
A dynamic neural network (DNN) observer-based output feedback controller for uncertain nonlinear systems with bounded disturbances is developed. The DNN-based observer works in conjunction with a dynamic filter for state estimation using only output measurements during online operation. A sliding mode term is included in the DNN structure to robustly account for exogenous disturbances and reconstruction errors. Weight update laws for the DNN, based on estimation errors, tracking errors, and the filter output are developed, which guarantee asymptotic regulation of the state estimation error. A combination of a DNN feedforward term, along with the estimated state feedback and sliding mode terms yield an asymptotic tracking result. The developed output feedback (OFB) method yields asymptotic tracking and asymptotic estimation of unmeasurable states for a class of uncertain nonlinear systems with bounded disturbances. A two-link robot manipulator is used to investigate the performance of the proposed control approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.