Abstract
Emotion is a key motivational factor of a person strivings for health and well-being. Understanding neural networks supporting different types of emotion bears far-reaching implications for mental health. Recent studies suggest that emotional processing is associated with a large number of brain regions. However, the precise functional connectivity (FC) of these regions in investigations of emotional processing are largely unknown. To address this issue, we recruited 359 participants who completed emotional-related measures including the Positive and Negative Affect Schedule (PANAS) the Self-Compassion Scale, while scanned with resting-state functional magnetic resonance images (fMRI). Here, we proposed a novel psychological characteristics analysis framework by using a dynamic sliding window method to characterize the nature of resting-state functional connectivity in the human brain, in relation to the static FC method. The comparison results showed that the dynamic FC method produced the better performance, compared to the static FC method. The global network analyses across all 6 possible connectivity matrices further demonstrated that the dynamically hemispheric asymmetry best predicted emotional processing. The dynamic FC method was evaluated on the three emotional labels - positive emotion, negative emotion, self-compassion and the best prediction performance was consistently observed in the dynamically hemispheric asymmetric FC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.