Abstract

Like distributed systems, biological multicellular processes are subject to dynamic changes and a biological system will not pass the survival-of-the-fittest test unless it exhibits certain features that enable fast recovery from these changes. In most cases, the types of dynamic changes a biological process may experience and its desired recovery features differ from those traditionally studied in the distributed computing literature. In particular, a question seldomly asked in the context of distributed digital systems and that is crucial in the context of biological cellular networks, is whether the system can keep the changing components confined so that only nodes in their vicinity may be affected by the changes, but nodes sufficiently far away from any changing component remain unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.