Abstract

Statistical methods for dynamic network analysis have advanced greatly in the past decade. This article extends current estimation methods for dynamic network logistic regression (DNR) models, a subfamily of the Temporal Exponential-family Random Graph Models, to network panel data which contain missing data in the edge and/or vertex sets. We begin by reviewing DNR inference in the complete data case. We then provide a missing data framework for DNR families akin to that of Little and Rubin (2002) or Gile and Handcock (2010a). We discuss several methods for dealing with missing data, including multiple imputation (MI). We consider the computational complexity of the MI methods in the DNR case and propose a scalable, design-based approach that exploits the simplifying assumptions of DNR. We dub this technique the "complete-case" method. Finally, we examine the performance of this method via a simulation study of induced missingness in two classic network data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.