Abstract
In this paper, we study a Target-Attacker-Defender (TAD) differential game involving one attacker, one target and multiple defenders. We consider two variations where (a) the attacker and the target have unlimited observation range and the defenders are visibility constrained (b) only the attacker has unlimited observation range and the remaining players are visibility constrained. We model the players' interactions as a dynamic game with asymmetric information. Here, the visibility constraints of the players induce a visibility network which encapsulates the visibility information during the evolution of the game. Based on this observation, we introduce network adapted feedback or implementable strategies for visibility constrained players. Using inverse game theory approach we obtain network adapted feedback Nash equilibrium strategies. We introduce a consistency criterion for selecting a subset (or refinement) of network adapted feedback Nash strategies, and provide an optimization based approach for computing them. Finally, we illustrate our results with numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.