Abstract

We investigate theoretically the near-field dynamics of the scattering of a surface-plasmon polariton (SPP) pulse impinging normally on a rectangular groove on an otherwise planar metal surface. Our formulation is based on solving the reduced Rayleigh equation (derived through the use of an impedance boundary condition) for every component of the spectral decomposition of the incoming SPP pulse. Numerical calculations are carried out of the time dependence of the near-field resonant scattering effects produced at the rectangular groove. The scattering process is tracked through the (time-resolved) repartition of the incoming SPP electromagnetic energy into reflected and transmitted SPP pulses, and into pulsed scattered light. Furthermore, we directly show evidence of the excitation of single resonances, as manifested by the concentration of electric field intensity within the groove, and its subsequent leakage, over the resonance lifetime. The near-field formation of oscillations caused by the interference between two adjacent resonances simultaneously excited is also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.