Abstract
BackgroundSomatic chromosomal mosaicism is the presence of cell populations differing with respect to the chromosome complements (e.g. normal and abnormal) in an individual. Chromosomal mosaicism is associated with a wide spectrum of disease conditions and aging. Studying somatic genome variations has indicated that amounts of chromosomally abnormal cells are likely to be unstable. As a result, dynamic changes of mosaicism rates occur through ontogeny. Additionally, a correlation between disease severity and mosaicism rates appears to exist. High mosaicism rates are usually associated with severe disease phenotypes, whereas low-level mosaicism is generally observed in milder disease phenotypes or in presumably unaffected individuals. Here, we hypothesize that dynamic nature of somatic chromosomal mosaicism may result from genetic-environmental interactions creating therapeutic opportunities in the associated diseases and aging.ConclusionGenetic-environmental interactions seem to contribute to the dynamic nature of somatic mosaicism. Accordingly, an external influence on cellular populations may shift the ratio of karyotypically normal and abnormal cells in favor of an increase in the amount of cells without chromosome rearrangements. Taking into account the role of somatic chromosomal mosaicism in health and disease, we have hypothesized that artificial changing of somatic mosaicism rates may be beneficial in individuals suffering from the associated diseases and/or behavioral or reproductive problems. In addition, such therapeutic procedures might be useful for anti-aging strategies (i.e. possible rejuvenation through a decrease in levels of chromosomal mosaicism) increasing the lifespan. Finally, the hypothesis appears to be applicable to any type of somatic mosacism.
Highlights
Somatic chromosomal mosaicism is the presence of cell populations differing with respect to the chromosome complements in an individual
Somatic chromosomal mosaicism is the presence of chromosomally distinct cellular populations in an individual. This type of intercellular genomic variations is commonly associated with a wide spectrum of genetic diseases ranging from chromosomal syndromes to complex disorders
There is a line of evidences for a kind of self-correction of chromosome abnormalities in early mammalian development [17,18,19]. Taking into account these features of somatic mosaicism, we have hypothesized that dynamic changes in rates of chromosomal mosaicism mediated by genetic-environmental interactions are able to deliver therapeutic opportunities in disease and aging
Summary
Somatic chromosomal mosaicism is the presence of cell populations differing with respect to the chromosome complements (e.g. normal and abnormal) in an individual. This type of intercellular genomic variations is commonly associated with a wide spectrum of genetic diseases ranging from chromosomal syndromes to complex disorders. Taking into account these features of somatic mosaicism, we have hypothesized that dynamic changes in rates of chromosomal mosaicism mediated by genetic-environmental interactions are able to deliver therapeutic opportunities in disease and aging. Somatic variations of the human genome seem to achieve unprecedently high rates (i.e. the amount of chromosomally abnormal cells achieves the “ontogenetic” maximum).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.