Abstract

BackgroundAlternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. More than 50 different transcripts can be generated from a single HIV-1 unspliced pre-messenger RNA (pre-mRNA) and a balanced proportion of unspliced and spliced transcripts is critical for the production of infectious virions. Understanding the mechanisms involved in the regulation of viral RNA is therefore of potential therapeutic interest. However, monitoring the regulation of alternative splicing events at a transcriptome-wide level during cell infection is challenging. Here we used the long-read cDNA sequencing developed by Oxford Nanopore Technologies (ONT) to explore in a quantitative manner the complexity of the HIV-1 transcriptome regulation in infected primary CD4+ T cells.ResultsONT reads mapping to the viral genome proved sufficiently long to span all possible splice junctions, even distant ones, and to be assigned to a total of 150 exon combinations. Fifty-three viral RNA isoforms, including 14 new ones were further considered for quantification. Relative levels of viral RNAs determined by ONT sequencing showed a high degree of reproducibility, compared favourably to those produced in previous reports and highly correlated with quantitative PCR (qPCR) data. To get further insights into alternative splicing regulation, we then compiled quantifications of splice site (SS) usage and transcript levels to build “splice trees”, a quantitative representation of the cascade of events leading to the different viral isoforms. This approach allowed visualizing the complete rewiring of SS usages upon perturbation of SS D2 and its impact on viral isoform levels. Furthermore, we produced the first dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection. In particular, our data highlighted the importance of non-coding exons in viral RNA transcriptome regulation.ConclusionONT sequencing is a convenient and reliable strategy that enabled us to grasp the dynamic of the early splicing events modulating the viral RNA landscape in HIV-1 infected cells.

Highlights

  • Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially

  • The three cellular transcripts that are covered by the highest number of reads are B2M, TMSB10 and RPS29 with 0.62 to 1.31% of total reads, suggesting that HIV transcripts are highly expressed in infected CD4+ T cells

  • Our study shows that Oxford Nanopore Technologies (ONT) sequencing, in combination with a straightforward in-house pipeline analysis allows to recapitulate the classical map of HIV-1 transcriptome expressed in infected CD4+ T cells in a fast, cost-effective and highly reproducible manner

Read more

Summary

Introduction

Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. By producing a variety of different mRNA isoforms, alternative splicing is a means for the majority of cellular genes to expand and regulate expression of novel protein isoforms [1]. HIV-1 utilises this cellular process to generate more than 50 different viral transcripts from a single pre-mRNA [4, 5]. This highly regulated process impacts both the production of unspliced (US) genomic RNA and the mRNAs coding for viral proteins [6,7,8]. Cryptic SS and unusual sites have been described in several HIV-1 isolates/subtypes, expending further the repertoire to more than a hundred possible isoforms produced during infection [4, 5, 10,11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call