Abstract
In this paper, a novel dynamic multi-swarm particle swarm optimizer (PSO) is introduced. Different from the existing multi-swarm PSOs and the local version of PSO, the swarms are dynamic and the swarms' size is small. The whole population is divided into many small swarms, these swarms are regrouped frequently by using various regrouping schedules and information is exchanged among the swarms. Experiments are conducted on a set of shifted rotated benchmark functions and results show its better performance when compared with some recent PSO variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.