Abstract

Realistic multi-agent team applications often feature dynamic environments with soft deadlines that penalize late execution of tasks. This puts a premium on quickly allocating tasks to agents, but finding the optimal allocation is NP-hard due to temporal and spatial constraints that require tasks to be executed sequentially by agents. We propose FMC_TA, a novel task allocation algorithm that allows tasks to be easily sequenced to yield high-quality solutions. FMC_TA first finds allocations that are fair (envy-free), balancing the load and sharing important tasks between agents, and efficient (Pareto optimal) in a simplified version of the problem. It computes such allocations in polynomial or pseudo-polynomial time (centrally or distributedly, respectively) using a Fisher market with agents as buyers and tasks as goods. It then heuristically schedules the allocations, taking into account inter-agent constraints on shared tasks. We empirically compare our algorithm to state-of-the-art incomplete methods, both centralized and distributed, on law enforcement problems inspired by real police logs. The results show a clear advantage for FMC_TA both in total utility and in other measures commonly used by law enforcement authorities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.