Abstract
Cooperative multiagent probabilistic inference can be applied in areas such as building surveillance and complex system diagnosis to reason about the states of the distributed uncertain domains. In the static cases, multiply sectioned Bayesian networks (MSBNs) have provided a solution when interactions within each agent are structured and those among agents are limited. However, in the dynamic cases, the agents’ inference will not guarantee exact posterior probabilities if each agent evolves separately using a single agent dynamic Bayesian network (DBN). Nevertheless, due to the discount of the past, we may not have to use the whole history of a domain to reason about its current state. In this paper, we propose to reason about the state of a distributed dynamic domain period by period using an MSBN. To reduce the influence of the ignored history on the posterior probabilities to a minimum, we propose to observe as many observable variables as possible in the modeled history. Due to the limitations of the problem domains, it could be very costly to observe all observable variables. We present a distributed algorithm to compute all observable variables that are relevant to our concerns. Experimental results on the relationship between the computational complexity and the length of the represented history, and effectiveness of the approach are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.