Abstract

Multi-layer ensemble frameworks perform much better as compared to individual classifiers. However, selection of a classifier and its placement, impacts the overall performance of ensemble framework. This problem becomes very difficult, if there are more classifiers and layers. To address these problems in this paper, we design “Binary Particle Swarm Optimization” method for selection and placement of right classifiers in multi-layer ensemble model. Proposed classifier weight-assignment method is implemented to prioritize the selected classifiers. The model is simulated for the classification of social-user check-ins in Location-Based Social Network datasets. The experimental results show that the proposed ensemble model outperforms the state-of-the-art ensemble methods in the literature. It can be used by security firms, high level decision makers and various governmental organizations for tracking malicious users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.