Abstract

Electroencephalogram (EEG) based seizure prediction plays an important role in the closed-loop neuromodulation system. However, most existing seizure prediction methods based on graph convolution network only focused on constructing the static graph, ignoring multi-domain dynamic changes in deep graph structure. Moreover, the existing feature fusion strategies generally concatenated coarse-grained epileptic EEG features directly, leading to the suboptimal seizure prediction performance. To address these issues, we propose a novel multi-branch dynamic multi-graph convolution based channel-weighted transformer feature fusion network (MB-dMGC-CWTFFNet) for the patient-specific seizure prediction with the superior performance. Specifically, a multi-branch (MB) feature extractor is first applied to capture the temporal, spatial and spectral representations fromthe epileptic EEG jointly. Then, we design a point-wise dynamic multi-graph convolution network (dMGCN) to dynamically learn deep graph structures, which can effectively extract high-level features from the multi-domain graph. Finally, by integrating the local and global channel-weighted strategies with the multi-head self-attention mechanism, a channel-weighted transformer feature fusion network (CWTFFNet) is adopted to efficiently fuse the multi-domain graph features. The proposed MB-dMGC-CWTFFNet is evaluated on the public CHB-MIT EEG and a private intracranial sEEG datasets, and the experimental results demonstrate that our proposed method achieves outstanding prediction performance compared with the state-of-the-art methods, indicating an effective tool for patient-specific seizure warning. Our code will be available at: https://github.com/Rockingsnow/MB-dMGC-CWTFFNet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.