Abstract
Sequential Recommender Systems (SRSs) aim to predict the next item that users will consume, by modeling the user interests within their item sequences. While most existing SRSs focus on a single type of user behavior, only a few pay attention to multi-behavior sequences, although they are very common in real-world scenarios. It is challenging to effectively capture the user interests within multi-behavior sequences, because the information about user interests is entangled throughout the sequences in complex relationships. To this end, we first address the characteristics of multi-behavior sequences that should be considered in SRSs, and then propose novel methods for Dynamic Multi-behavior Sequence modeling named DyMuS, which is a light version, and DyMuS+, which is an improved version, considering the characteristics. DyMuS first encodes each behavior sequence independently, and then combines the encoded sequences using dynamic routing, which dynamically integrates information required in the final result from among many candidates, based on correlations between the sequences. DyMuS+, furthermore, applies the dynamic routing even to encoding each behavior sequence to further capture the correlations at item-level. Moreover, we release a new, large and up-to-date dataset for multi-behavior recommendation. Our experiments on DyMuS and DyMuS+ show their superiority and the significance of capturing the characteristics of multi-behavior sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.