Abstract

In this article, a robot skills learning framework is developed, which considers both motion modeling and execution. In order to enable the robot to learn skills from demonstrations, a learning method called dynamic movement primitives (DMPs) is introduced to model motion. A staged teaching strategy is integrated into DMPs frameworks to enhance the generality such that the complicated tasks can be also performed for multi-joint manipulators. The DMP connection method is used to make an accurate and smooth transition in position and velocity space to connect complex motion sequences. In addition, motions are categorized into different goals and durations. It is worth mentioning that an adaptive neural networks (NNs) control method is proposed to achieve highly accurate trajectory tracking and to ensure the performance of action execution, which is beneficial to the improvement of reliability of the skills learning system. The experiment test on the Baxter robot verifies the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.