Abstract

IntroductionSomatosensory evoked potential (SEP) recordings and continuous electroencephalography (EEG) are important tools with which to predict Glasgow Outcome Scale (GOS) scores. Their combined use may potentially allow for early detection of neurological impairment and more effective treatment of clinical deterioration.MethodsWe followed up 68 selected comatose patients between 2007 and 2009 who had been admitted to the Neurosurgical Intensive Care Unit of Treviso Hospital after being diagnosed with subarachnoid haemorrhage (51 cases) or intracerebral haemorrhage (17 cases). Quantitative brain function monitoring was carried out using a remote EEG-SEP recording system connected to a small amplification head box with 28 channels and a multimodal stimulator (NEMO; EBNeuro, Italy NeMus 2; EBNeuro S.p.A., Via P. Fanfani 97/A - 50127 Firenze, Italy). For statistical analysis, we fit a binary logistic regression model to estimate the effect of brain function monitoring on the probability of GOS scores equal to 1. We also designed a proportional odds model for GOS scores, depending on amplitude and changes in both SEPs and EEG as well as on the joint effect of other related variables. Both families of models, logistic regression analysis and proportional odds ratios, were fit by using a maximum likelihood test and the partial effect of each variable was assessed by using a likelihood ratio test.ResultsUsing the logistic regression model, we observed that progressive deterioration on the basis of EEG was associated with an increased risk of dying by almost 24% compared to patients whose condition did not worsen according to EEG. SEP decreases were also significant; for patients with worsening SEPs, the odds of dying increased to approximately 32%. In the proportional odds model, only modifications of Modified Glasgow Coma Scale scores and SEPs during hospitalisation statistically significantly predicted GOS scores. Patients whose SEPs worsened during the last time interval had an approximately 17 times greater probability of a poor GOS score compared to the other patients.ConclusionsThe combined use of SEPs and continuous EEG monitoring is a unique example of dynamic brain monitoring. The temporal variation of these two parameters evaluated by continuous monitoring can establish whether the treatments used for patients receiving neurocritical care are properly tailored to the neurological changes induced by the lesions responsible for secondary damage.

Highlights

  • Somatosensory evoked potential (SEP) recordings and continuous electroencephalography (EEG) are important tools with which to predict Glasgow Outcome Scale (GOS) scores

  • EEGSEP worsening appeared after intracranial pressure (ICP) increase in four patients with brain swelling documented on serial computed tomography (CT) scans

  • The temporal variation of these two parameters, evaluated on the basis of continuous monitoring, can confirm whether the treatment is tailored to the neurological changes induced by the lesion responsible for the secondary damage

Read more

Summary

Introduction

Somatosensory evoked potential (SEP) recordings and continuous electroencephalography (EEG) are important tools with which to predict Glasgow Outcome Scale (GOS) scores. Their combined use may potentially allow for early detection of neurological impairment and more effective treatment of clinical deterioration. The application of continuous neurophysiological monitoring with somatosensory evoked potentials (SEPs) and electroencephalography (EEG) has an intuitive appeal, as these techniques yield a direct measure of brain function in patients whose neurological status might otherwise be difficult to evaluate [3,4]. Short-latency SEPs are largely resistant to analgo-sedation and have a waveform that is interpretable and comparable in subsequent recordings They have peripheral, spinal, brainstem and intracortical components which are always noticeable by exploring an extended central nervous system (CNS) pathway. In the absence of a relevant lesion along the afferent sensory pathways, short-latency SEPs can provide a ‘global’ index of brain function on the basis of brainstem, thalamocortical and intracortical transmission in both hemispheres

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call