Abstract

Multivariate statistical monitoring methods are proven to be effective for the dynamic tobacco strip manufacturing process. However, the traditional methods are not sensitive enough to small faults and the practical tobacco processing monitoring requires further root cause of quality issues. In this regard, this study proposed a unified framework of detection-identification-tracing. This approach developed a dissimilarity canonical variable analysis (CVA), namely, it integrated the dissimilarity analysis concept into CVA, enabling the description of incipient relationship among the process variables and quality variables. We also adopted the reconstruction-based contribution to separate the potential abnormal variable and form the candidate set. The transfer entropy method was used to identify the causal relationship between variables and establish the matrix and topology diagram of causal relationships for root cause diagnosis. We applied this unified framework to the practical operation data of tobacco strip processing from a tobacco factory. The results showed that, compared with traditional contribution plot of anomaly detection, the proposed approach cannot only accurately separate abnormal variables but also locate the position of the root cause. The dissimilarity CVA proposed in this study outperformed traditional CVA in terms of sensitiveness to faults. This method would provide theoretical support for the reliable abnormal detection and diagnosis in the tobacco production process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call