Abstract
The dynamic molecular mobility of poly(2-hydroxypropyl methacrylate) (PHPMA) base polyurethane (PU) was studied over a broad range of frequency and temperature by combining dynamic dielectric spectroscopy and dynamic mechanical analysis. Two hydrated levels were considered in this study: dry and room humidity states. In dry state, two secondary relaxations γ and β are identified. And in room humidity state, a βsw mode is pointed out. These modes are well known in poly(hydroxylalkyl methacrylate)s. The main α relaxation is influenced by humidity and crosslinks. The Kramers-Kronig transform is used to reveal an ionic conductivity σionic. Relaxation times extracted from dielectric and mechanical analyses are coherent for PU and PHPMA. This correlation allows us to propose an interpretation of relaxations at a molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.