Abstract

Atomic force microscopy (AFM) offers nanoscale mapping of materials’ properties. Especially, our modified AFM termed “nanorheological AFM” enables us to measure the accurate frequency-dependent storage and loss moduli and loss tangent over a sixth-order frequency range without any temperature control at nanoscale resolution. These dynamic properties obtained by nanorheological AFM can be compared with those using bulk dynamic mechanical analysis (DMA) measurements. In this paper, we applied this technique to silica-filled styrene–butadiene rubber (SBR) to investigate the nature of the interfacial rubber region existing between a rubber matrix and silica particles at different temperatures. The dynamics properties of the interfacial rubber region were different from those of matrix rubber regions. The master curve obtained by this technique perfectly coincided with that by bulk DMA. Furthermore, it was found that the behavior of bulk loss tangent could be predicted by the contributions from both matrix and...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.