Abstract
A ferroelectric liquid crystal polarization rotator (FLCPR) has been widely used in polarization measurement due to its fast and stable modulation characteristics. The accurate characterization of the modulation performance of FLCPR directly affects the measurement accuracy of the instrument based on liquid crystal modulation. In this study, FLCPR is accurately characterized using a self-developed high-speed Stokes polarimeter. Strong linear and weak circular birefringence are observed during modulation processes, and all the optical parameters of FLCPR are dependent on driving voltage. A dual FLCPR-based Mueller matrix polarimeter is designed on the basis of the Stokes polarimeter. The designed polarimeter combines the advantages of the high modulation frequency of FLCPR and the ultrahigh temporal resolution of the fast polarization measurement system in the Stokes polarimeter. The optimal configuration of the designed polarizer is predicted in accordance with singular value decomposition. A simulated thickness measurement of a 24 nm standard SiO2 thin film is performed using the optimal configuration. Results show that the relative error in thickness measurement caused by using the unsatisfactory modulation characteristics of FLCPR reaches up to −4.34%. This finding demonstrates the importance of the accurate characterization of FLCPR in developing a Mueller matrix polarizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.