Abstract

AbstractWidely acknowledged that the capacity of Li‐O2 batteries (LOBs) should be strongly determined by growth behaviors of the discharge product of lithium peroxide (Li2O2) that follows both coexisting surface and solution pathways. However until now, it remains still challenging to achieve dynamic modulation on Li2O2 morphologies. Herein, the photo‐responsive Au nanoparticles (NPs) supported on reduced oxide graphene (Au/rGO) have been utilized as cathode to manipulate oxygen reduction reaction (ORR) kinetics by aid of surface plasmon resonance (SPR) effects. Thus, we can experimentally reveal the importance of matching ORR kinetics with Li+ migration towards battery performance. Moreover, it is found that Li+ concentration polarization caused “sudden death” of LOBs is supposed to be just a form of suspended animation that could timely recover under irradiation. This work provides us an in‐depth explanation on the working mechanism of LOBs from a kinetic perspective, offering valuable insights for the future battery design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.