Abstract
Equivalent single and multi degree-of-freedom systems are used to predict low-velocity impact damage of composite sandwich panels by rigid projectiles. The composite sandwich panels are symmetric and consist of orthotropic laminate facesheets and a core with constant crushing resistance. The transient deformation response of the sandwich panels subjected to impact were predicted in a previous paper, and analytical solutions for the impact force and velocity at damage initiation in sandwich panels are presented in this second paper. Several damage initiation modes are considered, including tensile and shear fracture of the top facesheet, core shear failure, and tensile failure of back facesheet. The impact failure modes are similar to static indentation failure modes, but inertial resistance and high strain rate material properties of the facesheets and core influence impact damage loads. Predicted damage initiation loads and impact velocities compare well with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.