Abstract
This article presents a model of a proton exchange membrane fuel cell (PEMFC) system for marine power systems. PEMFC in marine hybrid power sources can have various power ranges and capacities in contrast with vehicle applications. Investigating PEMFCs behaviour and performance for various conditions and configurations is demanded for proper sizing and feasibility studies. Hence, modelling and simulation facilitate understanding the performance of the PEMFC behaviour with various sizes and configurations in power systems. The developed model in this work has a system level fidelity with real time capabilities, which can be utilized for simulator approaches besides quasi-static studies with a power-efficiency curve. Moreover, the model can be used for scaling the PEMFC power range by considering transient responses and corresponding efficiencies. The Bond graph approach as a multi-disciplinary energy based modelling strategy is employed for the PEMFC as a multi domains system. In the end, various PEMFC cell numbers and compressor sizes have been compared with power-efficiency curves and transient responses in a benchmark.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.