Abstract

Partial nitration-anammox is a resource-efficient pathway for nitrogen removal from wastewater. However, the advantages of this nitrogen removal technology may be counter-acted by the emission of N2 O, a potent greenhouse gas. In this study, mathematical modelling was applied to analyse N2 O formation and emission dynamics and to develop N2 O mitigation strategies for a one-stage partial nitritation-anammox granular sludge reactor. Dynamic model calibration for such a full-scale reactor was performed, applying a one-dimensional biofilm model and including several N2 O formation pathways. Simultaneous calibration of liquid phase concentrations and N2 O emissions leads to improved model fit compared to their consecutive calibration. The model could quantitatively predict the average N2 O emissions and qualitatively characterize the N2 O dynamics, adjusting only seven parameter values. The model was validated with N2 O data from an independent data set at different aeration conditions. Nitrifier nitrification was identified as the dominating N2 O formation pathway. Off-gas recirculation as a potential N2 O emission reduction strategy was tested by simulation and showed indeed some improvement, be it at the cost of higher aeration energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.