Abstract

Abstract This paper aims to develop a new computationally efficient method for the dynamic modelling of a Planar Parallel Manipulator (PPM) based on the Discrete Time Transfer Matrix Method (DT-TMM). In this preliminary work, we use a 3-PRR PPM as a study case to demonstrate the major procedures and principles of employing the DT-TMM for the dynamic modelling of a PPM. The major focus of this work is to present the basic principles of the DT-TMM for the dynamic modelling of a PPM: decomposing the whole parallel manipulator to the individual components, establishing the dynamics of each component/link, linearizing the component/element dynamics to obtain the transfer matrix of each component/link, and assembling the component dynamics into the system dynamics of the PPM using the transfer matrices of all components/elements. To make the work more readable, the brief introduction of the inverse kinematics and the inverse dynamics is also included. The numerical simulations are conducted based on the 3-PRR PPM with rigid links in this preliminary research effort. The simulation results are compared with those from the model using the principle virtual work method and ADAMS software. The numerical simulation results and comparison demonstrate the effectiveness of the dynamic modelling method using DT-TMM for the PPM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call