Abstract

Nuclear Overhauser effect (NOE) measurements on molecules in solution provide information about only the ensemble-averaged properties of these molecules. An algorithm is presented that uses a list of NOEs to produce an ensemble of molecules that on average agrees with these NOEs, taking into account the effect of surrounding spins on the buildup of each NOE ('spin diffusion'). A simplified molecular dynamics simulation on several copies of the molecule in parallel is restrained by forces that are derived directly from differences between calculated and measured NOEs. The algorithm is tested on experimental NOE data of a helical peptide derived from bovine pancreatic trypsin inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.