Abstract

Bolting joint is widely used in aero-engine, but the existing analysis theory of bolting joint interface strength connection completely ignores the aerodynamic load borne by blade and support disks. Therefore, in view of the aero-engine rotor system, we establish a bolt-flange connection blade-disk-drum joint model. Based on the l-stubs strength theory, considering three failure modes of bolt-flange interface stiffness, we study the connection strength of the disk-drum structure under aerodynamic force and bolt preload, and analyse the steady-state response of the rotor system under different connection states. The results show that the aerodynamic load will produce three kinds of yield phenomena on the rotor interface, and reduce the critical speed of the rotor system. Due to the stiffness loss of the connection interface, the critical speed of the rotor decreases and a subcritical resonance phenomenon occurs after the second critical speed. At the same time, the increase of interface contact damping results in the failure of vibration energy transfer between disk and drum, which makes the drum more susceptible to external excitation. By balancing bolt preload and interface friction coefficient, the influence of aerodynamic load on interface contact characteristics can be reduced, and the working efficiency of rotor system can be improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.