Abstract
A comprehensive dynamic control oriented model of a polymer electrolyte fuel cell (PEFC) is developed, considering the mixed effects of temperature, gas flow and capacitance. The fractional relationship between the dynamic output voltage and the capacitance, which escaped the attention in most previous studies is also addressed. Moreover, based on the developed PEFC model, a proportional integral and derivative (PID) controller is designed to stabilize the output voltage at a determined value by regulating the input hydrogen mass flow rate under a series of disturbance in the input. The dynamic PEFC model and controller are simulated in Matlab/Simulink. The simulation results illustrate that the PEFC system model is capable of characterizing dynamic properties of PEFCs. Additionally, the developed PID controller is effective in stabilizing the output voltage with a rather small overshoot and rather faster response, which also proves that the developed model is suitable for PEFC control algorithms development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.