Abstract

A dynamic rate-based model was developed for stripping in CO2 capture from coal-fired power plants with 30 wt % monoethanolamine (MEA). The model, created in a flow sheet of Aspen Custom Modeler, was based on the film theory for liquid and vapor phases. It takes into account the impact of equilibrium reactions on the mass transfer, thermodynamic nonidealities, and the hydraulics of the structured packing. With this model, steady state analyses were carried out for the stripper to understand the effect of the lean loading and the height of the packing on total equivalent work and find optimum operating conditions that minimize power plant lost work. Two dynamic strategies with control configurations are proposed to run the stripper in a flexible operation during the period of electricity peak load and prices. Open loop responses demonstrated some differences in dynamic behavior and steady state values for proposed dynamic strategies. One of the approaches increased the CO2 removal by 1% at the reduced stea...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.