Abstract
Lithium-oxygen cells with organic electrolyte suffer high overpotentials during charge, indicating asymmetric charge/discharge reaction mechanisms. We present a multi-physics dynamic modeling and simulation study of the Li/O2 cell cycling behavior. We present three different multi-step mechanisms of the 2 Li + O2 ⇄ Li2O2 cell reaction, (A) a reversible 5-step mechanism, (B) a partially irreversible 6-step mechanism, and (C) a partially irreversible 8-step mechanism that includes reactions of a redox mediator. Model predictions are compared to experimental galvanostatic cycling data of Swagelok cells without and with 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) as redox mediator. All mechanisms are able to predict the discharge behavior in good agreement to the experimental results. The experimentally observed high charge overpotentials as well as their reduction by using a redox mediator can be qualitatively reproduced with the irreversible reaction mechanisms. However, the particular shape of the experimental charge curve with continuously increasing charge overpotential cannot be reproduced with the present mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.