Abstract

Cellular senescence is a cell fate that prominently impacts physiological and pathophysiological processes. Diverse cellular stresses induce it, and dramatic gene expression changes accompany it. However, determining the interactions comprising the gene regulatory network (GRN) governing senescence remains challenging. Recent advances in signal processing techniques provide opportunities to reconstruct GRNs. Here, we describe a GRN for senescence integrating time-series transcriptome and transcription factor depletion datasets. Specifically, we infer a set of differential equations using the “Sparse Identification of Nonlinear Dynamics” (SINDy) algorithm, discriminate genes with potential hidden regulators, validate the inferred GRN for time-points not included in the training data, and comprehensively benchmark our approach. Our work is a proof of concept for a data-driven GRN reconstruction method, consolidating an iterative, powerful mathematical platform for senescence modeling that can be used to test hypotheses in silico and has the potential for future discoveries of clinical impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.