Abstract

Here the dynamic behavior of slider-crank mechanism with a driving force applied at crank-pin center, has been modeled to formulate the piston speed.  In view of the abundance of the parameters involved, a lumped parameter approach has been preferred to obtain a compact equation in the form of a second order nonlinear differential equation. The complexity of the resulting equation has mandated implementing a numerical solution technique by which the effects of the selected parameters on the piston speed have been investigated. Under similar conditions an experimental model has been prepared and the tests have been carried out to compare the results. Low error levels achieved in two results have demonstrated the validity of the developed model.  

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.