Abstract

In recent years, there has been increasing interest in hard-magnetic soft materials (HMSMs) due to their ability to retain high residual magnetization and undergo large deformations under external magnetic loading. The performance of these materials in the dynamic mode of actuation is significantly influenced by internal properties, such as entanglements, crosslinks, and the finite extensibility of polymer chains. This article presents a theoretical framework for modeling the dynamic behavior of a hard-magnetic soft material-based planar actuator. A physics-based nonaffine material model is utilized to consider the inherent properties of polymer chain networks. The governing equation for dynamic motion is derived using Euler–Lagrange’s equation of motion for conservative systems. The devised dynamic model is utilized to examine the dynamic response, stability, periodicity, and resonance properties of a planar hard-magnetic soft actuator for different values of polymer chain entanglements, crosslinks, and finite extensibility parameters. The Poincaré maps and phase-plane plots are presented to analyze the stability and periodicity of the nonlinear vibrations of the actuator. The results reveal that transitions between aperiodic and quasi-periodic oscillations occur when the density of polymer chain entanglements and cross-linking changes. The findings from the present investigation can serve as an initial step towards the design and manufacturing of remotely controlled actuators for various futuristic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.