Abstract

Geological carbon storage (GCS), particularly within deep saline aquifers, is considered a promising and efficient approach for sequestering significant volumes of anthropogenic CO2. Computational models play a crucial role in assessing the feasibility of GCS, as they contribute to risk assessment, delineation of area of review, short-term and long-term monitoring design, regulatory compliance, decision-making, project planning and optimization. Currently, there are numerous applications for Class VI permits with accompanied GCS modeling results with various levels of implementation of best practices that the industry and academia has developed over the past several years. It is, therefore, necessary to document the established practices, with the aim of creating a more unified approach for modeling CO2 behavior in aquifers. This study provides an overview of practices and workflows for reservoir modeling, particularly focusing on CO2 storage in saline aquifers, with a specific attention to the United States regulations, including those set by the Environmental Protection Agency (EPA). We focus on technical challenges and potential solutions for creating reasonably accurate and scientifically robust GCS dynamic models within aquifers, while considering factors like hydrodynamics, geology, thermophysics, geochemistry, and geomechanics. Our goal is to provide a valuable resource to both industry stakeholders and academic researchers, enhancing the understanding of GCS dynamic modeling implementations and directing future research and development efforts in line with Class VI permit objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.